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AN APPLICATION OF THE MULTIVARIATE
EXTENDED POISSON DISTRIBUTION IN 2 x 2
CONTINGENCY TABLES
by
H. I. Patel
and

S. J. Trivedi

1. Introduction

The various methods for making a combined test of independence of
two characteristics in the data consisting of a series of 2 X 2 tables
obtained under different situations have been described by Cochran [1].
Let n, the total number of individuals in a 2 x 2 table, be divided as

follows:

00 01 0
%10 X1 X
X.O X.l n

If

and ﬂll (such that T _ + T _ + T__ + = 1)

|
00 01 10 11

are the corresponding probabilities, the probability distribution of
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kit T k(Y
00> o1 24 Tjp-

Now let us consider a situation where n (>1) varies according to a Poisson

(XOO, X01’ xlO) will be multinomial with parameters n,

distribution. For example, the number of accidents observed per week on

a certain high-way may be divided into a 2 x 2 contingency table according
to major and minor accidents and day-time and nighf-time accidents.
Applications of perhaps greater interest to a ‘:ospace scientists might
involve thunderstorm accompanied by rain versus thunderstorm without

rain; thunderstorm within, say, a ten mile radius of the observer versus
thunderstorm at a specific point, and other similar atmospheric phenomena.
Here we may assume the Poisson distribution for the number of occurrences.

In such situations, we can make use of the additional information that the



distribution of n is known. To test the independence in these situations,

in this paper, the likelihood ratio test is developed.

2. Unconditional Distribution of the Cell Frequencies (X X

OO’XOI’ 10)°

For fixed n, the probability distribution of (X Xlo) will be

OO’XOl’

given by a multinomial distribution with parameters n, HOO’HOI and HIO'

The probability generating function of (XOO’XOI’XIO) in terms of Zl,Z2
and 23 will be given by
n
P(2),25,250) = (1 - mgo = mgy * 7y ¥ ToaZy * Mg 2y * TypZs)

If we assume that n is a random variable with truncated Poisson dis-

tribution

,» =1, 2, ; A>0

then the unconditional probability generating function of (XOO’ XOI’XIO)

will be given by (Khatri [3])

- ¥ T S
P(2),2,,29) = L P(Z,Z,,%|n) —
n=1 n!(l-e )

Hence the unconditional distribution of (X xlO) will become (Cohen
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Where m, = AT

1 00
m, = Aoy
mz = ATy
1-exp[-m -m -m_]
and 8 1 2 3
1-exp(-1)

This may be considered as an extended multivariate Poisson distribution.

3. Formulation of Hypotheses:

Taking 7 and Ty as the marginal probabilities of given two character-

istics, under the assumption of independence, =

00~ ".0%"0.” "1 T~ ".1 * To.
and 0= .o X .
"00 o1 0.
10 1 ™.
T.0 T 1.0
Thus we have,
H : Cell-probabilities can be written as the

0
product of the marginal probabilites as shown

above

and HI: Cell probabilities cannot be written as the
product of the marginal probabilities

Under Ho’ the probability distribution (2.1) becomes (after having

the relation A = (m3+m1)(m2+m1) /ml)



M forx = X = X =0

exp(B)-exp(-a) °’ 00  “01 ~ "10
EXpooXo12X105M oMo M) =
X00 X01 X10
m, mz m3
X 3 ctherwise
OO Ol.n 1o ‘{exp(B)-exp(-a
(3.1)
Where o = m2m3/m1 and B = m1+m2+m3. Here o and B are introduced only for
convenience; our interest is still lying only in m,,m, and My
4, Maximum Likelihood Estimates of the Parameter of distribution (2.1).

We have a series of groups of observations and each group is divided
into a 2 x 2 contingency table as described before. Let fijk = frequency for
X00 =1, X01 = j and X10 = k. Then the likelihood function based on (2.1) will

be given as

c 8exp (-B)m; LI mk fijk
000 2"3
= (1-9) nnn ( )
ijk i'j1k! [1-exp(-8)]
i+j+k>0

Writing C = logi! + logj! + logk!, we get logL = f, log(l-6) + £ £ 5 f..

000 - ijk
§+}+k>0

{log6—8+ilogm1+jlogm2

+k10gm3—c—log[1-exp(—8)]}

Differentiating logL partially with respect to 6, m.,, m, and m, and writing

1° 72 3
A = l-exp(-B), we obtain
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a8 - 1-6 )
2%255 = £z f X [ %— - i ]
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i+3+k>0
(4.1)
%%2&& = ¥ ICT f"k [ . %.]
2 ijkx 1 2
i+j+k>0
9logL k 1
= rrf,  [—-%]
M3 ijx komg A
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Equating the system (4.1) to zero, we get
8 = N£000
N
m = NX5p A / (N-fOOO)
(4.2)
oo Ny A/ (N-£f )
5 = N X01 A 000
37 N Xy A/ (-fpe0)
Where N = I I fi'k’ the number of 2 x 2 tables,A = 1 - exp(-8) and 8
ijk M
= m1 + m, + m3. From last three equations of (4.2), we get
my = MXoo / Xoy
(4.3)

>

3 2x10 / XOl

)
=

Substituting (4.3) in the last equation of (4.2) we get

l-exp{—mz( 00+X01+X10) / xOl} = (N-fooo).m2 / N.X01 .. (4.4)



Expanding the exponential term, step by step, first upto linear term in mz,

~

then upto quadratic term in m, and so on, we shall get successive improved
estimates ot m,. This method is to be repeated until two successive values
1 and mg will be obtained.

5. Maximum Likelihood Estimates of the parameters of distribution (2.1)

of m, become nearly equal. Finally m

under the hypothesis of independence.

Under HO’ the log likelihood will be given by

logl = fooolog[l-exp(-a)] - {log[exp(Rr) - exp(-a}]}i ? i fijk

+ 2 L% fijk [ilogm +jlogm, +klogm_-c],
. . 1 2 3
ijk

i+j+k>0

+j+

[

where ¢ = logi! + logj! + logk! (from (3.1))

Differentialing partially with respect to m,, m, and m, we get

12 72 3

2
f exp (B) -exp (-a)m, m,/m
dlogl _ 1000 2 2"3'™ =
my  Toexp(-a) texp(-ajmym/my} - A—exprpr=explt-o) N * Ngo/™
f exp(c)+exp(-a)m_/n
3logl _ 000 . . ) ! =
amz 1_exp(_o‘)Lexp( a)ms/ml} { o~ (3)-exp (-a) IN + NXOl/mZ
f exp(B)+exp(-a)m,/m
3logL _ 000 i ) 2’M
am3 l—expi-a){exP( a)mz/ml} exp (B)-exp(-a) N
+ Nilo/m3 ....... (5.1)

~

. dlogl - "0 o] "0 .
Let us define ami gi(ml,mz,ms). 1f my, m, and m, are the first

approximate values of the estimates of m,, m, and me respectively, then
according to the Taylor Series expansion, we get the following equations.

- )
(Expansion is considered only upto the first power of (m; - R.)).
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~ o 1v1772°°3 _ o _0O
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i=1 1 i &o n° n°
1723
3 - ~ ag (m ,m,,m )
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17273
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By iteration, we can solve these equations for m, ,m,, and m;.

6. First Approximates under H,, of m »m, and m, by using mements of first

0
order and zero cell frequency.

1

Under HO’ the probability distribution of (XOO’XOI’ xlO) is given by

- .
[1-exp(-a)] /[exp(B) - exp(-a)]
for X,.. =X., =X,.=0
. i 00 = *o1 = %10
f("00”(01”(10"“1’“’2’“’3)"{ X x. x
L Yoo Y1 10
R

, otherwise
X0 X1 X1o! Lexp (B) - exp (-a)]

=

+m, +m

Where o = mzmz/m1 and B = m, 2 3

It can be shown that

E(Xy,) = m exp(8) /[exp(8)-exp (-a)]

E(XOI) = mzexp(B)/[exp(B)—exp -} ... (6.1)
and E(X,,) = mzexp(B)/fexp(B)-exp (-a)
Now equating the probability of X00 = X01 = X10 = 0 to the ratio of zero

frequency to the total frequency in the sample, we get

fOOO [exp(é) - exp(—;)] = N[l—exp(—;)] ...... (6.2)

7



Equating (6.1) to the corresponding sample means, we get

X, = m exp(f ; S
Xgg = m,exp(B) /lexp(8) - exp(-a)]
Xy) = mpep(® /lexp(®) - exp(-)]  » ...l (6.3)
Xio = mzexp (B} /[exp(B) - exp(-a)] |
Hence, m, = XOl 1 / XOO
(6.4)
and mg = Xyomy / Xog

Substituting exp(é) - exp(—&) = N[exp(é) -11/(N-f ...} (from (6.2))in the

000

first equation of (6.3), we obtain

- - - - f000 "
- ¥ - X - Y ; 6.5
m, +m, +m, log X00 log [X00 m) m1] .. (6.5)

Substituting (6.4) in (6.5), we get

“ X N-f
m1 +—'——'(l(')—__. log [1-—

Xo0*X01*X10 00

] =0 . (6.6)

It can be seen that equations (6.4) and (6.6) are equivalent to the equations
(4.3) and (4.4). Thus we can use the maximum likelihood estimates obtained in
the general case as the first approximates for the iteration procedure for

obtaining the maximum likelihood estimates under HO.

7. Likelihood Ratio Test.

Let (54’52"'°’5p) be a sample from the probability density function

(2.1), where X, is 3-dimensional vector having the components (XOOi’X01i’X101)'

Under HO, the p.d.f. (2.1) reduces to p.d.f. (3.1) containing only 3 parameters.
Let 94 be the 4-dimensional parameter space for which m
Let wg be the subset of 94 for which HO is true. (HO:
dependence of two given characteristics). Thus for this test the likelihood

1>O, m2>0, m,

the hypothesis of in-

>0, 6>0.




ratio X is given by

Sup
wg likelihood function
A=
SUP likelihood function
4

Where the estimates of the parameters given in (5) are used to obtain the
numerator and those given in (4) are used to obtain the denominator.

For large number of groups (number of 2x2 tables), the distribution

of -2log) is approximately x? with 1 d.f. if Hy is true [Wilks (4)].

8. A Numerical Illustration:-

A random sample of size 31 was drawn from a Poisson population with

mean A = 3.3333. The following are the observations.
2,5,8,5,4,3,8,2,6,5,6,1, 2,5,3,6,4,3,3,2,5,2,4,6,2,3,1,2,4,4,4.

Each of the above observations was considered as the total size of a 2x2
contingency table. Thus, 31 tables were constructed. The marginal

probabilities o and T., were selected to be 1/3 and 2/5 respectively.

This gave the following table under the hypothesis of independence.

T00 = 2/15 Top = 3/15 Ty = 1/3
o = 4/15 LT 6/15 T = 2/3
Teg = 2/5 LE 3/5 1.0

The total size of a table was divided randomly into 4 cells according
to the multinomial distribution with the parameters given by the above

table. The following 2x2 tables were observed:
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In the space @, the maximum likelihood estimates of m m.and 6 were

1> M0 M3
obtained using (4.2), (4.3) and (4.4). Using these as initial estimates of
ml, m, and mg, the maximum likelihood estimates of the parameters under the
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null hypothesis were obtained by carrying out the iteration procedure (5.2)
on IBM 7090/7094 using Fortran IV. The solution converged to five places of
decimals in 4 cycles.

In the space {, we obtained

m. = 0.53610, m. = 0.85146, m

1 2

3 1.07221 and é = 0.93550

In the space w, we obtained

m, = 0.54197, m. = 0.85561, m

1

1.07796

2 3

These results gave
-210gex = 0.02422

Considering -2log) as approximately x2 with 1 d.f., the value of

-2logh is not at all significant resulting in the acceptance of HO i.e. the

hypothesis of independence.

Combining all the tables into one, x2 (usual test) was obtained as
0.4243. This value, too, is not significant. It should, however, be noted
that the value of x2 obtained according our test is much lower as compared
to the one obtained by combining all the tables. This suggests that the
test developed here may be more efficient. However, further studies into

the efficiency aspect are necessary before reaching a final conclusion.
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